Difference between revisions of "Relationship between sinh and hypergeometric 0F1"
From specialfunctionswiki
(Created page with "<div class="toccolours mw-collapsible mw-collapsed"> <strong>Theorem:</strong> The following formula holds: $$\sinh(az)=az...") |
(No difference)
|
Revision as of 03:58, 19 August 2015
Theorem: The following formula holds: $$\sinh(az)=az {}_0F_1 \left( ; \dfrac{3}{2} ; \dfrac{(az)^2}{4} \right),$$ where $\sinh$ denotes the hyperbolic sine and ${}_0F_1$ denotes the hypergeometric pFq.
Proof: █