Difference between revisions of "Spherical Bessel y"

From specialfunctionswiki
Jump to: navigation, search
(Properties)
Line 2: Line 2:
 
$$y_{\nu}(z)=\sqrt{\dfrac{\pi}{2z}} Y_{\nu+\frac{1}{2}}(z),$$
 
$$y_{\nu}(z)=\sqrt{\dfrac{\pi}{2z}} Y_{\nu+\frac{1}{2}}(z),$$
 
where $Y_{\nu}$ denotes the [[Bessel Y sub nu|Bessel function of the second kind]].
 
where $Y_{\nu}$ denotes the [[Bessel Y sub nu|Bessel function of the second kind]].
 +
 +
<div align="center">
 +
<gallery>
 +
File:Domcolsphericalbesselysub0.png|[[Domain coloring]] of $y_0$.
 +
</gallery>
 +
</div>
  
 
=Properties=
 
=Properties=

Revision as of 02:59, 21 August 2015

The spherical Bessel function of the second kind is $$y_{\nu}(z)=\sqrt{\dfrac{\pi}{2z}} Y_{\nu+\frac{1}{2}}(z),$$ where $Y_{\nu}$ denotes the Bessel function of the second kind.

Properties

Theorem

The following formula holds for non-negative integers $n$: $$y_n(z)=(-1)^{n+1}z^n \left( \dfrac{1}{z} \dfrac{d}{dz} \right)^n \left( \dfrac{\cos z}{z} \right),$$ where $y_n$ denotes the spherical Bessel function of the second kind and $\cos$ denotes the cosine function.

Proof

References

<center>Bessel functions
</center>