Difference between revisions of "Cosh"
(→Properties) |
(→Properties) |
||
Line 13: | Line 13: | ||
{{:Relationship between cosh and hypergeometric 0F1}} | {{:Relationship between cosh and hypergeometric 0F1}} | ||
{{:Relationship between Bessel I sub 1/2 and cosh}} | {{:Relationship between Bessel I sub 1/2 and cosh}} | ||
− | + | {{:Relationship between cosh and cos}} | |
+ | {{:Relationship between cos and cosh}} | ||
<center>{{:Hyperbolic trigonometric functions footer}}</center> | <center>{{:Hyperbolic trigonometric functions footer}}</center> |
Revision as of 05:30, 25 August 2015
The hyperbolic cosine function is defined by $$\mathrm{cosh}(z)=\dfrac{e^z + e^{-z}}{2}$$
- Complex Cosh.jpg
Domain coloring of analytic continuation of $\cosh$.
Contents
Properties
Theorem
The following formula holds: $$\dfrac{\mathrm{d}}{\mathrm{d}z} \cosh(z) = \sinh(z),$$ where $\cosh$ denotes the hyperbolic cosine and $\sinh$ denotes the hyperbolic sine.
Proof
From the definition, $$\mathrm{cosh}(z)=\dfrac{e^z + e^{-z}}{2}$$ and so using the derivative of the exponential function, the linear property of the derivative, the chain rule, and the definition of the hyperbolic sine, $$\dfrac{\mathrm{d}}{\mathrm{d}z} \cosh(z)=\dfrac{e^z - e^{-z}}{2}=\sinh(z),$$ as was to be shown. █
References
Theorem
The Weierstrass factorization of $\cosh(x)$ is $$\cosh x = \displaystyle\prod_{k=1}^{\infty} 1 + \dfrac{4x^2}{(2k-1)^2\pi^2}.$$
Proof
References
Theorem
The following formula holds: $$\cosh(az)=az {}_0F_1 \left( ; \dfrac{1}{2}; \dfrac{(az)^2}{4} \right),$$ where $\cosh$ denotes the hyperbolic cosine and ${}_0F_1$ denotes the hypergeometric pFq.
Proof
References
Theorem
The following formula holds: $$I_{-\frac{1}{2}}(z)=\sqrt{\dfrac{2}{\pi z}} \cosh(z),$$ where $I_{-\frac{1}{2}}$ denotes the modified Bessel function of the first kind and $\cosh$ denotes the hyperbolic cosine.
Proof
References
Theorem
The following formula holds: $$\cosh(z)=\cos(iz),$$ where $\cosh$ is the hyperbolic cosine and $\cos$ is the cosine.
Proof
References
- 1964: Milton Abramowitz and Irene A. Stegun: Handbook of mathematical functions ... (previous) ... (next): $4.5.8$
Theorem
The following formula holds: $$\cos(z)=\cosh(iz),$$ where $\cos$ is the cosine and $\cosh$ is the hyperbolic cosine.
Proof
From the definition of $\cosh$ and the definition of $\cos$, $$\cosh(iz)=\dfrac{e^{iz}+e^{-iz}}{2}=\cos(z),$$ as was to be shown.