Difference between revisions of "Relationship between secant, Gudermannian, and cosh"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "<div class="toccolours mw-collapsible mw-collapsed"> <strong>Theorem:</strong> The following formula holds: $$\sec(\mathrm{gd}(x))=\cosh(x),$$ where $\sec$ denotes the secan...")
 
Line 1: Line 1:
 
<div class="toccolours mw-collapsible mw-collapsed">
 
<div class="toccolours mw-collapsible mw-collapsed">
<strong>Theorem:</strong> The following formula holds:
+
<strong>[[Relationship between secant, Gudermannian, and cosh|Theorem]]:</strong> The following formula holds:
 
$$\sec(\mathrm{gd}(x))=\cosh(x),$$
 
$$\sec(\mathrm{gd}(x))=\cosh(x),$$
 
where $\sec$ denotes the [[secant]], $\mathrm{gd}$ denotes the [[Gudermannian]], and $\cosh$ denotes the [[cosh|hyperbolic cosine]].  
 
where $\sec$ denotes the [[secant]], $\mathrm{gd}$ denotes the [[Gudermannian]], and $\cosh$ denotes the [[cosh|hyperbolic cosine]].  

Revision as of 22:59, 25 August 2015

Theorem: The following formula holds: $$\sec(\mathrm{gd}(x))=\cosh(x),$$ where $\sec$ denotes the secant, $\mathrm{gd}$ denotes the Gudermannian, and $\cosh$ denotes the hyperbolic cosine.

Proof: