Difference between revisions of "Inverse Gudermannian"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "The inverse Gudermannian $\mathrm{gd}^{-1}$ is the inverse function of the Gudermannian function. It may be defined by the following formula for $x \in \mathbb{R}$: $$...")
 
Line 2: Line 2:
 
$$\mathrm{gd}^{-1}(x)=\displaystyle\int_0^x \dfrac{1}{\cosh(t)} dt,$$
 
$$\mathrm{gd}^{-1}(x)=\displaystyle\int_0^x \dfrac{1}{\cosh(t)} dt,$$
 
where $\cosh$ denotes the [[cosh|hyperbolic cosine]].
 
where $\cosh$ denotes the [[cosh|hyperbolic cosine]].
 +
 +
<div align="center">
 +
<gallery>
 +
File:Inversegudermannianplot.png|Graph of $\mathrm{gd}^{-1}$.
 +
File:Domcolinversegudermannian.png|[[Domain coloring]] of $\mathrm{gd}^{-1}$.
 +
</gallery>
 +
</div>
  
 
=Properties=
 
=Properties=

Revision as of 23:21, 25 August 2015

The inverse Gudermannian $\mathrm{gd}^{-1}$ is the inverse function of the Gudermannian function. It may be defined by the following formula for $x \in \mathbb{R}$: $$\mathrm{gd}^{-1}(x)=\displaystyle\int_0^x \dfrac{1}{\cosh(t)} dt,$$ where $\cosh$ denotes the hyperbolic cosine.

Properties