Difference between revisions of "Inverse Gudermannian"

From specialfunctionswiki
Jump to: navigation, search
(Properties)
Line 11: Line 11:
  
 
=Properties=
 
=Properties=
 +
<div class="toccolours mw-collapsible mw-collapsed">
 +
<strong>Theorem:</strong> The following formula holds:
 +
$$\sinh(\mathrm{gd}^{-1}(x))=\tan(x),$$
 +
where $\sinh$ is the [[sinh|hyperbolic sine]], $\mathrm{gd}^{-1}$ is the [[inverse Gudermannian]], and $\tan$ is the [[tangent]].
 +
<div class="mw-collapsible-content">
 +
<strong>Proof:</strong> █
 +
</div>
 +
</div>
 +
 +
<div class="toccolours mw-collapsible mw-collapsed">
 +
<strong>Theorem:</strong> The following formula holds:
 +
$$\cosh(\mathrm{gd}^{-1}(x))=\sec(x),$$
 +
where $\cosh$ is the [[cosh|hyperbolic cosine]], $\mathrm{gd}^{-1}$ is the [[inverse Gudermannian]], and $\sec$ is the [[secant]].
 +
<div class="mw-collapsible-content">
 +
<strong>Proof:</strong> █
 +
</div>
 +
</div>
 +
 +
<div class="toccolours mw-collapsible mw-collapsed">
 +
<strong>Theorem:</strong> The following formula holds:
 +
$$\mathrm{tanh}(\mathrm{gd}^{-1}(x))=\sin(x),$$
 +
where $\mathrm{tanh}$ is the [[tanh|hyperbolic tangent]], $\mathrm{gd}^{-1}$ is the [[inverse Gudermannian]], and $\sin$ is the [[sine]].
 +
<div class="mw-collapsible-content">
 +
<strong>Proof:</strong> █
 +
</div>
 +
</div>
 +
 +
<div class="toccolours mw-collapsible mw-collapsed">
 +
<strong>Theorem:</strong> The following formula holds:
 +
$$\mathrm{csch}(\mathrm{gd}^{-1}(x))=\cot(x),$$
 +
where $\mathrm{csch}$ is the [[csch|hyperbolic cosecant]], $\mathrm{gd}^{-1}$ is the [[inverse Gudermannian]], and $\cot$ is the [[cotangent]].
 +
<div class="mw-collapsible-content">
 +
<strong>Proof:</strong> █
 +
</div>
 +
</div>
 +
 +
<div class="toccolours mw-collapsible mw-collapsed">
 +
<strong>Theorem:</strong> The following formula holds:
 +
$$\mathrm{sech}(\mathrm{gd}^{-1}(x))=\cos(x),$$
 +
where $\mathrm{sech}$ is the [[sech|hyperbolic secant]], $\mathrm{gd}^{-1}$ is the [[inverse Gudermannian]], and $\cos$ is the [[cosine]].
 +
<div class="mw-collapsible-content">
 +
<strong>Proof:</strong> █
 +
</div>
 +
</div>
 +
 +
<div class="toccolours mw-collapsible mw-collapsed">
 +
<strong>Theorem:</strong> The following formula holds:
 +
$$\mathrm{coth}(\mathrm{gd}^{-1}(x))=\csc(x),$$
 +
where $\mathrm{coth}$ is the [[coth|hyperbolic cotangent]], $\mathrm{gd}^{-1}$ is the [[inverse Gudermannian]], and $\csc$ is the [[cosecant]].
 +
<div class="mw-collapsible-content">
 +
<strong>Proof:</strong> █
 +
</div>
 +
</div>

Revision as of 23:30, 25 August 2015

The inverse Gudermannian $\mathrm{gd}^{-1}$ is the inverse function of the Gudermannian function. It may be defined by the following formula for $x \in \mathbb{R}$: $$\mathrm{gd}^{-1}(x)=\displaystyle\int_0^x \dfrac{1}{\cosh(t)} dt,$$ where $\cosh$ denotes the hyperbolic cosine.

Properties

Theorem: The following formula holds: $$\sinh(\mathrm{gd}^{-1}(x))=\tan(x),$$ where $\sinh$ is the hyperbolic sine, $\mathrm{gd}^{-1}$ is the inverse Gudermannian, and $\tan$ is the tangent.

Proof:

Theorem: The following formula holds: $$\cosh(\mathrm{gd}^{-1}(x))=\sec(x),$$ where $\cosh$ is the hyperbolic cosine, $\mathrm{gd}^{-1}$ is the inverse Gudermannian, and $\sec$ is the secant.

Proof:

Theorem: The following formula holds: $$\mathrm{tanh}(\mathrm{gd}^{-1}(x))=\sin(x),$$ where $\mathrm{tanh}$ is the hyperbolic tangent, $\mathrm{gd}^{-1}$ is the inverse Gudermannian, and $\sin$ is the sine.

Proof:

Theorem: The following formula holds: $$\mathrm{csch}(\mathrm{gd}^{-1}(x))=\cot(x),$$ where $\mathrm{csch}$ is the hyperbolic cosecant, $\mathrm{gd}^{-1}$ is the inverse Gudermannian, and $\cot$ is the cotangent.

Proof:

Theorem: The following formula holds: $$\mathrm{sech}(\mathrm{gd}^{-1}(x))=\cos(x),$$ where $\mathrm{sech}$ is the hyperbolic secant, $\mathrm{gd}^{-1}$ is the inverse Gudermannian, and $\cos$ is the cosine.

Proof:

Theorem: The following formula holds: $$\mathrm{coth}(\mathrm{gd}^{-1}(x))=\csc(x),$$ where $\mathrm{coth}$ is the hyperbolic cotangent, $\mathrm{gd}^{-1}$ is the inverse Gudermannian, and $\csc$ is the cosecant.

Proof: