Difference between revisions of "Gudermannian"

From specialfunctionswiki
Jump to: navigation, search
Line 10: Line 10:
  
 
=Properties=
 
=Properties=
 +
<div class="toccolours mw-collapsible mw-collapsed">
 +
<strong>Theorem:</strong> The following formula holds: $\dfrac{d}{dx} \mathrm{gd}(x)=\mathrm{sech}(x).$
 +
<div class="mw-collapsible-content">
 +
<strong>Proof:</strong> █
 +
</div>
 +
</div>
 +
 
{{:Relationship between sine, Gudermannian, and tanh}}
 
{{:Relationship between sine, Gudermannian, and tanh}}
 
{{:Relationship between cosine, Gudermannian, and sech}}
 
{{:Relationship between cosine, Gudermannian, and sech}}

Revision as of 23:39, 25 August 2015

The Gudermannian $\mathrm{gd}$ is defined for $x \in \mathbb{R}$ by the formula $$\mathrm{gd}(x) = \displaystyle\int_0^x \dfrac{1}{\cosh t} dt$$

Properties

Theorem: The following formula holds: $\dfrac{d}{dx} \mathrm{gd}(x)=\mathrm{sech}(x).$

Proof:

Theorem

The following formula holds: $$\sin(\mathrm{gd}(x))=\tanh(x),$$ where $\sin$ denotes the sine, $\mathrm{gd}$ denotes the Gudermannian, and $\tanh$ denotes the hyperbolic tangent.

Proof

References

Theorem

The following formula holds: $$\cos(\mathrm{gd}(x))=\mathrm{sech}(x),$$ where $\cos$ denotes the cosine, $\mathrm{gd}$ denotes the Gudermannian, and $\mathrm{sech}$ denotes the hyperbolic secant.

Proof

References

Theorem

The following formula holds: $$\tan(\mathrm{gd}(x))=\sinh(x),$$ where $\tan$ denotes tangent, $\mathrm{gd}$ denotes the Gudermannian, and $\sinh$ denotes the hyperbolic sine.

Proof

References

Theorem

The following formula holds: $$\csc(\mathrm{gd}(x))=\mathrm{coth}(x),$$ where $\csc$ is the cosecant, $\mathrm{gd}$ is the Gudermannian, and $\mathrm{coth}$ is the hyperbolic cotangent.

Proof

References

Theorem

The following formula holds: $$\sec(\mathrm{gd}(x))=\cosh(x),$$ where $\sec$ denotes the secant, $\mathrm{gd}$ denotes the Gudermannian, and $\cosh$ denotes the hyperbolic cosine.

Proof

References

Theorem

The following formula holds: $$\cot(\mathrm{gd}(x))=\mathrm{csch}(x),$$ where $\cot$ is the cotangent, $\mathrm{gd}$ is the Gudermannian, and $\mathrm{csch}$ is the hyperbolic cosecant.

Proof

References

<center>$\ast$-integral functions
</center>