Difference between revisions of "Taylor series for Gudermannian"
From specialfunctionswiki
(Created page with "<div class="toccolours mw-collapsible mw-collapsed"> <strong>Theorem:</strong> The following formula holds: $$\dfrac{\mathrm{gd}(x)}{2} = \d...") |
(No difference)
|
Revision as of 02:40, 26 August 2015
Theorem: The following formula holds: $$\dfrac{\mathrm{gd}(x)}{2} = \displaystyle\sum_{k=0}^{\infty} \dfrac{(-1)^k \mathrm{tanh}^{2k+1}(\frac{x}{2})}{2k+1},$$ where $\mathrm{gd}$ is the Gudermannian and $\tanh$ is the hyperbolic tangent.
Proof: █