Difference between revisions of "Q-exponential E sub q"
From specialfunctionswiki
m (Tom moved page Q-exponential E to Q-exponential E sub q) |
|||
Line 1: | Line 1: | ||
− | + | If $|q|>1$ or the pair $0 < |q| <1$ and $|z| < \dfrac{1}{|1-q|}$ hold, then the $q$-exponential $E_q$ is | |
− | $$E_q(z)=\displaystyle\sum_{k=0}^{\infty} \dfrac{z^k}{[k]_q!} = \ | + | $$E_q(z)=\displaystyle\sum_{k=0}^{\infty} \dfrac{z^k}{[k]_q!},$$ |
− | + | where $[k]_q!$ denotes the [[q-factorial|$q$-factorial]]. | |
+ | |||
+ | =Properties= | ||
+ | <div class="toccolours mw-collapsible mw-collapsed"> | ||
+ | <strong>Theorem:</strong> The following [[meromorphic continuation]] of $E_q$ holds: | ||
+ | $$E_q(z)=\dfrac{1}{(z(1-q);q)_{\infty}},$$ | ||
+ | where $(z(1-q);q)_{\infty}$ denotes the [[q-Pochhammer symbol]]. | ||
+ | <div class="mw-collapsible-content"> | ||
+ | <strong>Proof:</strong> █ | ||
+ | </div> | ||
+ | </div> | ||
+ | |||
+ | |||
+ | <div class="toccolours mw-collapsible mw-collapsed"> | ||
+ | <strong>Theorem:</strong> The following formula holds: | ||
+ | $$D_q E_q(z) = aE_q(az),$$ | ||
+ | where $D_q$ is the [[q-difference operator|$q$-difference operator]] and $E_q$ is the [[Q-exponential E sub q|$q$-exponential $E_q$]]. | ||
+ | <div class="mw-collapsible-content"> | ||
+ | <strong>Proof:</strong> █ | ||
+ | </div> | ||
+ | </div> |
Revision as of 21:39, 5 September 2015
If $|q|>1$ or the pair $0 < |q| <1$ and $|z| < \dfrac{1}{|1-q|}$ hold, then the $q$-exponential $E_q$ is $$E_q(z)=\displaystyle\sum_{k=0}^{\infty} \dfrac{z^k}{[k]_q!},$$ where $[k]_q!$ denotes the $q$-factorial.
Properties
Theorem: The following meromorphic continuation of $E_q$ holds: $$E_q(z)=\dfrac{1}{(z(1-q);q)_{\infty}},$$ where $(z(1-q);q)_{\infty}$ denotes the q-Pochhammer symbol.
Proof: █
Theorem: The following formula holds: $$D_q E_q(z) = aE_q(az),$$ where $D_q$ is the $q$-difference operator and $E_q$ is the $q$-exponential $E_q$.
Proof: █