Difference between revisions of "Arcsinh"

From specialfunctionswiki
Jump to: navigation, search
Line 17: Line 17:
 
</div>
 
</div>
 
</div>
 
</div>
 +
 +
=References=
 +
[http://dualaud.net/specialfunctionswiki/abramowitz_and_stegun-1.03/page_86.htm Abramowitz&Stegun]
  
 
<center>{{:Inverse hyperbolic trigonometric functions footer}}</center>
 
<center>{{:Inverse hyperbolic trigonometric functions footer}}</center>

Revision as of 09:35, 9 November 2015

The $\mathrm{arcsinh}$ function is the inverse function of the hyperbolic sine function defined by $$\mathrm{arcsinh}(z)=\log\left(z+\sqrt{1+z^2}\right).$$

Properties

Theorem: The following formula holds: $$\dfrac{d}{dz} \mathrm{arcsinh}(z) = \dfrac{1}{\sqrt{1+z^2}}.$$

Proof:

References

Abramowitz&Stegun

<center>Inverse hyperbolic trigonometric functions
</center>