Difference between revisions of "Scorer Gi"
From specialfunctionswiki
(→Properties) |
|||
Line 3: | Line 3: | ||
=Properties= | =Properties= | ||
− | + | {{:Relationship between Scorer Gi and Airy functions}} | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
=See Also= | =See Also= |
Revision as of 17:32, 31 December 2015
The Scorer $\mathrm{Gi}$ function is a solution of the differential equation $y(x)-x y(x)=\dfrac{1}{\pi}$ and may be defined by the formula $$\mathrm{Gi}(x)=\dfrac{1}{\pi} \displaystyle\int_0^{\infty} \sin \left( \dfrac{t^3}{3}+xt \right)dt.$$
Properties
Theorem
The following formula holds: $$\mathrm{Gi}(x)=\mathrm{Bi}(x)\displaystyle\int_x^{\infty} \mathrm{Ai}(t)\mathrm{d}t + \mathrm{Ai}(x)\displaystyle\int_0^x \mathrm{Bi}(t) \mathrm{d}t,$$ where $\mathrm{Gi}$ denotes the Scorer Gi function, $\mathrm{Ai}$ denotes the Airy Ai function, and $\mathrm{Bi}$ denotes the Airy Bi function.