Difference between revisions of "Darboux function"
From specialfunctionswiki
(Created page with "The Darboux function is defined by $$D(x)=\displaystyle\sum_{k=1}^{\infty} \dfrac{\sin\left((k+1)!x\right)}{k!},$$ where $\sin$ denotes the sine function. =Properties= <...") |
(→Properties) |
||
Line 5: | Line 5: | ||
=Properties= | =Properties= | ||
<div class="toccolours mw-collapsible mw-collapsed"> | <div class="toccolours mw-collapsible mw-collapsed"> | ||
− | <strong>Theorem:</strong> The Darboux function is [[continuous]]. | + | <strong>Theorem:</strong> The Darboux function is [[continuous]] on $\mathbb{R}$. |
<div class="mw-collapsible-content"> | <div class="mw-collapsible-content"> | ||
<strong>Proof:</strong> █ | <strong>Proof:</strong> █ | ||
Line 12: | Line 12: | ||
<div class="toccolours mw-collapsible mw-collapsed"> | <div class="toccolours mw-collapsible mw-collapsed"> | ||
− | <strong>Theorem:</strong> The Darboux function is [[nowhere differentiable]]. | + | <strong>Theorem:</strong> The Darboux function is [[nowhere differentiable]] on $\mathbb{R}$. |
<div class="mw-collapsible-content"> | <div class="mw-collapsible-content"> | ||
<strong>Proof:</strong> █ | <strong>Proof:</strong> █ |
Revision as of 22:56, 31 December 2015
The Darboux function is defined by $$D(x)=\displaystyle\sum_{k=1}^{\infty} \dfrac{\sin\left((k+1)!x\right)}{k!},$$ where $\sin$ denotes the sine function.
Properties
Theorem: The Darboux function is continuous on $\mathbb{R}$.
Proof: █
Theorem: The Darboux function is nowhere differentiable on $\mathbb{R}$.
Proof: █