Difference between revisions of "Riemann function"

From specialfunctionswiki
Jump to: navigation, search
Line 2: Line 2:
 
$$R(x)=\displaystyle\sum_{k=1}^{\infty} \dfrac{\sin(k^2 x)}{k^2}.$$
 
$$R(x)=\displaystyle\sum_{k=1}^{\infty} \dfrac{\sin(k^2 x)}{k^2}.$$
  
<div align="center">
+
The partial sum $R(x,N)=\displaystyle\sum_{k=1}^N \dfrac{\sin(k^2 x)}{k^2}$ for various values of $N$:<br />
<gallery>
+
[[File:Riemannfunction.gif|500px]]
File:Riemannfunction.gif|The partial sum $R(x,N)=\displaystyle\sum_{k=1}^N \dfrac{\sin(k^2 x)}{k^2}$ for various values of $N$.
 
</gallery>
 
</div>
 
  
 
=Properties=
 
=Properties=

Revision as of 13:25, 5 January 2016

The Riemann function is the function $R \colon \mathbb{R} \rightarrow \mathbb{R}$ defined by $$R(x)=\displaystyle\sum_{k=1}^{\infty} \dfrac{\sin(k^2 x)}{k^2}.$$

The partial sum $R(x,N)=\displaystyle\sum_{k=1}^N \dfrac{\sin(k^2 x)}{k^2}$ for various values of $N$:
Riemannfunction.gif

Properties

Theorem: The Riemann function is is continuous.

Proof:

Theorem: The Riemann function is nowhere differentiable except at points of the form $\pi \dfrac{2p+1}{2q+1}$ with $p,q \in \mathbb{Z}$.

Proof:

References

[1]