Difference between revisions of "Darboux function"

From specialfunctionswiki
Jump to: navigation, search
(Properties)
Line 2: Line 2:
 
$$D(x)=\displaystyle\sum_{k=1}^{\infty} \dfrac{\sin\left((k+1)!x\right)}{k!},$$
 
$$D(x)=\displaystyle\sum_{k=1}^{\infty} \dfrac{\sin\left((k+1)!x\right)}{k!},$$
 
where $\sin$ denotes the [[sine]] function.
 
where $\sin$ denotes the [[sine]] function.
 +
 +
<div align="center">
 +
<gallery>
 +
File:Darbouxplot.png|Plot of $D(x)$ on $[0,5]$.
 +
</gallery>
 +
</div>
  
 
=Properties=
 
=Properties=

Revision as of 18:27, 21 January 2016

The Darboux function is defined by $$D(x)=\displaystyle\sum_{k=1}^{\infty} \dfrac{\sin\left((k+1)!x\right)}{k!},$$ where $\sin$ denotes the sine function.

Properties

Theorem: The Darboux function is continuous on $\mathbb{R}$.

Proof:

Theorem: The Darboux function is nowhere differentiable on $\mathbb{R}$.

Proof:

References

[1]