Difference between revisions of "Darboux function"
From specialfunctionswiki
(→Properties) |
|||
Line 2: | Line 2: | ||
$$D(x)=\displaystyle\sum_{k=1}^{\infty} \dfrac{\sin\left((k+1)!x\right)}{k!},$$ | $$D(x)=\displaystyle\sum_{k=1}^{\infty} \dfrac{\sin\left((k+1)!x\right)}{k!},$$ | ||
where $\sin$ denotes the [[sine]] function. | where $\sin$ denotes the [[sine]] function. | ||
+ | |||
+ | <div align="center"> | ||
+ | <gallery> | ||
+ | File:Darbouxplot.png|Plot of $D(x)$ on $[0,5]$. | ||
+ | </gallery> | ||
+ | </div> | ||
=Properties= | =Properties= |
Revision as of 18:27, 21 January 2016
The Darboux function is defined by $$D(x)=\displaystyle\sum_{k=1}^{\infty} \dfrac{\sin\left((k+1)!x\right)}{k!},$$ where $\sin$ denotes the sine function.
Properties
Theorem: The Darboux function is continuous on $\mathbb{R}$.
Proof: █
Theorem: The Darboux function is nowhere differentiable on $\mathbb{R}$.
Proof: █