Difference between revisions of "Takagi function"

From specialfunctionswiki
Jump to: navigation, search
m (Tom moved page Blancmange function to Takagi function over redirect)
Line 1: Line 1:
Define the function $s(x)=\min_{n \in \mathbb{Z}} |x-n|$. The blancmange function (also called the Takagi function) is defined by
+
Define the function $s(x)=\min_{n \in \mathbb{Z}} |x-n|$. The Takagi function (also called the blancmange function) is defined by
$$\mathrm{blanc}(x)=\displaystyle\sum_{k=0}^{\infty} \dfrac{s(2^n x)}{2^n}.$$
+
$$\mathrm{takagi}(x)=\displaystyle\sum_{k=0}^{\infty} \dfrac{s(2^n x)}{2^n}.$$
  
 
<div align="center">
 
<div align="center">
 
<gallery>
 
<gallery>
File:Blancmangefunction.png|Graph of $\mathrm{blanc}$ on $[0,1]$.
+
File:Blancmangefunction.png|Graph of $\mathrm{takagi}$ on $[0,1]$.
 
</gallery>
 
</gallery>
 
</div>
 
</div>
Line 10: Line 10:
 
=Properties=
 
=Properties=
 
<div class="toccolours mw-collapsible mw-collapsed">
 
<div class="toccolours mw-collapsible mw-collapsed">
<strong>Theorem:</strong> The blancmange function is [[continuous]] on $\mathbb{R}$.
+
<strong>Theorem:</strong> The Takagi function is [[continuous]] on $\mathbb{R}$.
 
<div class="mw-collapsible-content">
 
<div class="mw-collapsible-content">
 
<strong>Proof:</strong> █  
 
<strong>Proof:</strong> █  
Line 17: Line 17:
  
 
<div class="toccolours mw-collapsible mw-collapsed">
 
<div class="toccolours mw-collapsible mw-collapsed">
<strong>Theorem:</strong> The Blancmange function is [[nowhere differentiable]] on $\mathbb{R}$.
+
<strong>Theorem:</strong> The Takagi function is [[nowhere differentiable]] on $\mathbb{R}$.
 
<div class="mw-collapsible-content">
 
<div class="mw-collapsible-content">
 
<strong>Proof:</strong> █  
 
<strong>Proof:</strong> █  

Revision as of 16:51, 22 January 2016

Define the function $s(x)=\min_{n \in \mathbb{Z}} |x-n|$. The Takagi function (also called the blancmange function) is defined by $$\mathrm{takagi}(x)=\displaystyle\sum_{k=0}^{\infty} \dfrac{s(2^n x)}{2^n}.$$

Properties

Theorem: The Takagi function is continuous on $\mathbb{R}$.

Proof:

Theorem: The Takagi function is nowhere differentiable on $\mathbb{R}$.

Proof:

See Also

van der Waerden function

References

[1]