Difference between revisions of "Meissel-Mertens constant"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "The Meissel-Mertens constant (also known as Mertens' constant, Kronecker's constant, the Hadamard-de la Vallée-Poussin constant, or prime reciprocal constant) is $$M=\display...")
 
Line 2: Line 2:
 
$$M=\displaystyle\lim_{n \rightarrow \infty} \left( \displaystyle\sum_{p \leq n;p \mathrm{\hspace{2pt} prime}} \dfrac{1}{p} - \log(\log(n)) \right).$$
 
$$M=\displaystyle\lim_{n \rightarrow \infty} \left( \displaystyle\sum_{p \leq n;p \mathrm{\hspace{2pt} prime}} \dfrac{1}{p} - \log(\log(n)) \right).$$
 
Note that the sum $\displaystyle\sum_{p \leq n;p \mathrm{\hspace{2pt} prime}} \dfrac{1}{p}$ diverges, so this definition resembles that of the [[Euler-Mascheroni constant]].
 
Note that the sum $\displaystyle\sum_{p \leq n;p \mathrm{\hspace{2pt} prime}} \dfrac{1}{p}$ diverges, so this definition resembles that of the [[Euler-Mascheroni constant]].
 +
 +
=Properties=
 +
<div class="toccolours mw-collapsible mw-collapsed">
 +
<strong>Theorem:</strong> The Meissel-Mertens constant can be written as
 +
$$M=\gamma + \displaystyle\sum_{p \leq n;p \mathrm{\hspace{2pt} prime}} \left[ \log \left( 1 - \dfrac{1}{p} \right) + \dfrac{1}{p} \right],$$
 +
where $\gamma$ denotes the [[Euler-Mascheroni constant]] and $\log$ denotes the [[logarithm]].
 +
<div class="mw-collapsible-content">
 +
<strong>Proof:</strong> █
 +
</div>
 +
</div>

Revision as of 14:40, 24 January 2016

The Meissel-Mertens constant (also known as Mertens' constant, Kronecker's constant, the Hadamard-de la Vallée-Poussin constant, or prime reciprocal constant) is $$M=\displaystyle\lim_{n \rightarrow \infty} \left( \displaystyle\sum_{p \leq n;p \mathrm{\hspace{2pt} prime}} \dfrac{1}{p} - \log(\log(n)) \right).$$ Note that the sum $\displaystyle\sum_{p \leq n;p \mathrm{\hspace{2pt} prime}} \dfrac{1}{p}$ diverges, so this definition resembles that of the Euler-Mascheroni constant.

Properties

Theorem: The Meissel-Mertens constant can be written as $$M=\gamma + \displaystyle\sum_{p \leq n;p \mathrm{\hspace{2pt} prime}} \left[ \log \left( 1 - \dfrac{1}{p} \right) + \dfrac{1}{p} \right],$$ where $\gamma$ denotes the Euler-Mascheroni constant and $\log$ denotes the logarithm.

Proof: