Difference between revisions of "Bernardi operator"
From specialfunctionswiki
(Created page with "The Bernardi operator $L_{\gamma}$ is defined for $\gamma \in \mathbb{Z}^+$ by $$L_{\gamma}\{f\}(z)=\dfrac{1+\gamma}{z^{\gamma}} \displaystyle\int_0^z f(\tau) \tau^{\gamma-1}....") |
(No difference)
|
Revision as of 04:30, 4 February 2016
The Bernardi operator $L_{\gamma}$ is defined for $\gamma \in \mathbb{Z}^+$ by $$L_{\gamma}\{f\}(z)=\dfrac{1+\gamma}{z^{\gamma}} \displaystyle\int_0^z f(\tau) \tau^{\gamma-1}.$$