Difference between revisions of "Derivative of sine"
From specialfunctionswiki
Line 6: | Line 6: | ||
<strong>Proof:</strong> From the definition, | <strong>Proof:</strong> From the definition, | ||
$$\sin(z) = \dfrac{e^{iz}-e^{-iz}}{2i},$$ | $$\sin(z) = \dfrac{e^{iz}-e^{-iz}}{2i},$$ | ||
− | and so using the [[derivative of the exponential function]], the [[linear | + | and so using the [[derivative of the exponential function]], the [[derivative is a linear operator|linear property of the derivative]], the [[chain rule]], and the definition of the cosine function, |
$$\begin{array}{ll} | $$\begin{array}{ll} | ||
\dfrac{\mathrm{d}}{\mathrm{d}z} \sin(z) &= \dfrac{1}{2i} \left[ \dfrac{\mathrm{d}}{\mathrm{d}z} [e^{iz}] - \dfrac{\mathrm{d}}{\mathrm{d}z}[e^{-iz}] \right] \\ | \dfrac{\mathrm{d}}{\mathrm{d}z} \sin(z) &= \dfrac{1}{2i} \left[ \dfrac{\mathrm{d}}{\mathrm{d}z} [e^{iz}] - \dfrac{\mathrm{d}}{\mathrm{d}z}[e^{-iz}] \right] \\ |
Revision as of 05:40, 8 February 2016
Proposition: The following formula holds: $$\dfrac{\mathrm{d}}{\mathrm{d}z} \sin(z) = \cos(z),$$ where $\sin$ denotes the sine function and $\cos$ denotes the cosine function.
Proof: From the definition, $$\sin(z) = \dfrac{e^{iz}-e^{-iz}}{2i},$$ and so using the derivative of the exponential function, the linear property of the derivative, the chain rule, and the definition of the cosine function, $$\begin{array}{ll} \dfrac{\mathrm{d}}{\mathrm{d}z} \sin(z) &= \dfrac{1}{2i} \left[ \dfrac{\mathrm{d}}{\mathrm{d}z} [e^{iz}] - \dfrac{\mathrm{d}}{\mathrm{d}z}[e^{-iz}] \right] \\ &= \dfrac{1}{2i} \left[ ie^{iz} + ie^{-iz} \right] \\ &= \dfrac{e^{iz}+e^{-iz}}{2} \\ &= \cos(z), \end{array}$$ as was to be shown. █