Difference between revisions of "Taylor series of sine"

From specialfunctionswiki
Jump to: navigation, search
Line 1: Line 1:
 
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px">
 
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px">
<strong>[[Taylor series of sine|Proposition]]:</strong> The following formula holds:
+
<strong>[[Taylor series of sine|Proposition]]:</strong> The following [[Taylor series]] holds:
<center>[[Sine|$\sin$]]$(x)=\displaystyle\sum_{k=0}^{\infty} \dfrac{(-1)^kx^{2k+1}}{(2k+1)!}$.</center>
+
$$\sin(z)=\displaystyle\sum_{k=0}^{\infty} \dfrac{(-1)^kz^{2k+1}}{(2k+1)!},$$
 +
where $\sin$ denotes the [[sine]] function.
 
<div class="mw-collapsible-content">
 
<div class="mw-collapsible-content">
 
<strong>Proof:</strong> █  
 
<strong>Proof:</strong> █  
 
</div>
 
</div>
 
</div>
 
</div>

Revision as of 05:44, 8 February 2016

Proposition: The following Taylor series holds: $$\sin(z)=\displaystyle\sum_{k=0}^{\infty} \dfrac{(-1)^kz^{2k+1}}{(2k+1)!},$$ where $\sin$ denotes the sine function.

Proof: