Difference between revisions of "Faddeeva function"
From specialfunctionswiki
(Created page with "The Faddeeva function is defined by $$w(z)=e^{-z^2} \left( 1 + \dfrac{2i}{\sqrt{\pi}} \displaystyle\int_0^x e^{t^2} dt \right)=e^{-z^2} \left[ 1 + \mathrm{erf}(iz)\right]=e^{-...") |
|||
Line 1: | Line 1: | ||
− | The Faddeeva function is defined by | + | The Faddeeva function (also called the Kramp function) is defined by |
$$w(z)=e^{-z^2} \left( 1 + \dfrac{2i}{\sqrt{\pi}} \displaystyle\int_0^x e^{t^2} dt \right)=e^{-z^2} \left[ 1 + \mathrm{erf}(iz)\right]=e^{-z^2} \mathrm{erfc}(-iz),$$ | $$w(z)=e^{-z^2} \left( 1 + \dfrac{2i}{\sqrt{\pi}} \displaystyle\int_0^x e^{t^2} dt \right)=e^{-z^2} \left[ 1 + \mathrm{erf}(iz)\right]=e^{-z^2} \mathrm{erfc}(-iz),$$ | ||
where $\mathrm{erf}$ denotes the [[error function]] and $\mathrm{erfc}$ denotes the [[complementary error function]]. | where $\mathrm{erf}$ denotes the [[error function]] and $\mathrm{erfc}$ denotes the [[complementary error function]]. |
Revision as of 22:55, 27 February 2016
The Faddeeva function (also called the Kramp function) is defined by $$w(z)=e^{-z^2} \left( 1 + \dfrac{2i}{\sqrt{\pi}} \displaystyle\int_0^x e^{t^2} dt \right)=e^{-z^2} \left[ 1 + \mathrm{erf}(iz)\right]=e^{-z^2} \mathrm{erfc}(-iz),$$ where $\mathrm{erf}$ denotes the error function and $\mathrm{erfc}$ denotes the complementary error function.