Difference between revisions of "Taylor series of the exponential function"
From specialfunctionswiki
(Created page with "<div class="toccolours mw-collapsible mw-collapsed"> <strong>Theorem:</strong> Let $z_0 \in \mathbb{C}$. The following Taylor series holds for all $z \in \mathbb{C}$: $$e^...") |
|||
Line 1: | Line 1: | ||
<div class="toccolours mw-collapsible mw-collapsed"> | <div class="toccolours mw-collapsible mw-collapsed"> | ||
− | <strong>Theorem:</strong> Let $z_0 \in \mathbb{C}$. The following [[Taylor series]] holds for all $z \in \mathbb{C}$: | + | <strong>[[Taylor series of the exponential function|Theorem]]:</strong> Let $z_0 \in \mathbb{C}$. The following [[Taylor series]] holds for all $z \in \mathbb{C}$: |
$$e^z = \displaystyle\sum_{k=0}^{\infty} \dfrac{(z-z_0)^k}{k!},$$ | $$e^z = \displaystyle\sum_{k=0}^{\infty} \dfrac{(z-z_0)^k}{k!},$$ | ||
where $e^z$ is the [[exponential function]]. | where $e^z$ is the [[exponential function]]. |
Revision as of 06:20, 25 March 2016
Theorem: Let $z_0 \in \mathbb{C}$. The following Taylor series holds for all $z \in \mathbb{C}$: $$e^z = \displaystyle\sum_{k=0}^{\infty} \dfrac{(z-z_0)^k}{k!},$$ where $e^z$ is the exponential function.
Proof: █