Difference between revisions of "Taylor series of the exponential function"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "<div class="toccolours mw-collapsible mw-collapsed"> <strong>Theorem:</strong> Let $z_0 \in \mathbb{C}$. The following Taylor series holds for all $z \in \mathbb{C}$: $$e^...")
 
Line 1: Line 1:
 
<div class="toccolours mw-collapsible mw-collapsed">
 
<div class="toccolours mw-collapsible mw-collapsed">
<strong>Theorem:</strong> Let $z_0 \in \mathbb{C}$. The following [[Taylor series]] holds for all $z \in \mathbb{C}$:
+
<strong>[[Taylor series of the exponential function|Theorem]]:</strong> Let $z_0 \in \mathbb{C}$. The following [[Taylor series]] holds for all $z \in \mathbb{C}$:
 
$$e^z = \displaystyle\sum_{k=0}^{\infty} \dfrac{(z-z_0)^k}{k!},$$
 
$$e^z = \displaystyle\sum_{k=0}^{\infty} \dfrac{(z-z_0)^k}{k!},$$
 
where $e^z$ is the [[exponential function]].
 
where $e^z$ is the [[exponential function]].

Revision as of 06:20, 25 March 2016

Theorem: Let $z_0 \in \mathbb{C}$. The following Taylor series holds for all $z \in \mathbb{C}$: $$e^z = \displaystyle\sum_{k=0}^{\infty} \dfrac{(z-z_0)^k}{k!},$$ where $e^z$ is the exponential function.

Proof: