Difference between revisions of "Taylor series of sine"

From specialfunctionswiki
Jump to: navigation, search
Line 1: Line 1:
 
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px">
 
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px">
<strong>[[Taylor series of sine|Proposition]]:</strong> The following [[Taylor series]] holds:
+
<strong>[[Taylor series of sine|Theorem]]:</strong> Let $z_0 \in \mathbb{C}$. The following [[Taylor series]] holds:
$$\sin(z)=\displaystyle\sum_{k=0}^{\infty} \dfrac{(-1)^kz^{2k+1}}{(2k+1)!},$$
+
$$\sin(z)=\displaystyle\sum_{k=0}^{\infty} \dfrac{(-1)^k(z-z_0)^{2k+1}}{(2k+1)!},$$
 
where $\sin$ denotes the [[sine]] function.
 
where $\sin$ denotes the [[sine]] function.
 
<div class="mw-collapsible-content">
 
<div class="mw-collapsible-content">

Revision as of 06:22, 25 March 2016

Theorem: Let $z_0 \in \mathbb{C}$. The following Taylor series holds: $$\sin(z)=\displaystyle\sum_{k=0}^{\infty} \dfrac{(-1)^k(z-z_0)^{2k+1}}{(2k+1)!},$$ where $\sin$ denotes the sine function.

Proof: