Difference between revisions of "Derivative of cosh"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "<div class="toccolours mw-collapsible mw-collapsed" style="width:800px"> <strong>Proposition:</strong> $\dfrac{d}{dx}$$\cosh$$(x)=$Sinh|$\sin...")
 
Line 1: Line 1:
 
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px">
 
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px">
<strong>[[Derivative of cosh|Proposition]]:</strong> $\dfrac{d}{dx}$[[Cosh|$\cosh$]]$(x)=$[[Sinh|$\sinh$]]$(x)$
+
<strong>[[Derivative of cosh|Proposition]]:</strong> The following formula holds:
 +
$$\dfrac{\mathrm{d}}{\mathrm{d}x} \cosh(x) = \sinh(x),$$
 +
where $\cosh$ denotes the [[Cosh|hyperbolic cosine]] and $\sinh$ denotes the [[sinh|hyperbolic sine]].
 
<div class="mw-collapsible-content">
 
<div class="mw-collapsible-content">
 
<strong>Proof:</strong> █  
 
<strong>Proof:</strong> █  
 
</div>
 
</div>
 
</div>
 
</div>

Revision as of 19:17, 9 May 2016

Proposition: The following formula holds: $$\dfrac{\mathrm{d}}{\mathrm{d}x} \cosh(x) = \sinh(x),$$ where $\cosh$ denotes the hyperbolic cosine and $\sinh$ denotes the hyperbolic sine.

Proof: