Difference between revisions of "Derivative of cosh"
From specialfunctionswiki
(Created page with "<div class="toccolours mw-collapsible mw-collapsed" style="width:800px"> <strong>Proposition:</strong> $\dfrac{d}{dx}$$\cosh$$(x)=$Sinh|$\sin...") |
|||
Line 1: | Line 1: | ||
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px"> | <div class="toccolours mw-collapsible mw-collapsed" style="width:800px"> | ||
− | <strong>[[Derivative of cosh|Proposition]]:</strong> $\dfrac{d}{ | + | <strong>[[Derivative of cosh|Proposition]]:</strong> The following formula holds: |
+ | $$\dfrac{\mathrm{d}}{\mathrm{d}x} \cosh(x) = \sinh(x),$$ | ||
+ | where $\cosh$ denotes the [[Cosh|hyperbolic cosine]] and $\sinh$ denotes the [[sinh|hyperbolic sine]]. | ||
<div class="mw-collapsible-content"> | <div class="mw-collapsible-content"> | ||
<strong>Proof:</strong> █ | <strong>Proof:</strong> █ | ||
</div> | </div> | ||
</div> | </div> |
Revision as of 19:17, 9 May 2016
Proposition: The following formula holds: $$\dfrac{\mathrm{d}}{\mathrm{d}x} \cosh(x) = \sinh(x),$$ where $\cosh$ denotes the hyperbolic cosine and $\sinh$ denotes the hyperbolic sine.
Proof: █