Difference between revisions of "Derivative of cosh"

From specialfunctionswiki
Jump to: navigation, search
Line 1: Line 1:
 
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px">
 
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px">
 
<strong>[[Derivative of cosh|Proposition]]:</strong> The following formula holds:
 
<strong>[[Derivative of cosh|Proposition]]:</strong> The following formula holds:
$$\dfrac{\mathrm{d}}{\mathrm{d}x} \cosh(z) = \sinh(z),$$
+
$$\dfrac{\mathrm{d}}{\mathrm{d}z} \cosh(z) = \sinh(z),$$
 
where $\cosh$ denotes the [[Cosh|hyperbolic cosine]] and $\sinh$ denotes the [[sinh|hyperbolic sine]].
 
where $\cosh$ denotes the [[Cosh|hyperbolic cosine]] and $\sinh$ denotes the [[sinh|hyperbolic sine]].
 
<div class="mw-collapsible-content">
 
<div class="mw-collapsible-content">

Revision as of 00:25, 11 May 2016

Proposition: The following formula holds: $$\dfrac{\mathrm{d}}{\mathrm{d}z} \cosh(z) = \sinh(z),$$ where $\cosh$ denotes the hyperbolic cosine and $\sinh$ denotes the hyperbolic sine.

Proof: From the definition, $$\mathrm{cosh}(z)=\dfrac{e^z + e^{-z}}{2}$$ and so using the derivative of the exponential function, the linear property of the derivative, the chain rule, and the definition of the hyperbolic sine, $$\dfrac{\mathrm{d}}{\mathrm{d}z} \cosh(z)=\dfrac{e^z - e^{-z}}{2}=\sinh(z),$$ as was to be shown. █