Difference between revisions of "Weierstrass elementary factors"
From specialfunctionswiki
(Created page with "The Weierstrass elementary factors $E_n$ are defined for $n \in \{0,1,2,\ldots\}$ by $$E_n(z)=\left\{ \begin{array}{ll} 1-z &; n=0 \\ (1-z)e^{z+\frac{z^2}{2}+\frac{z^3}{3}+\ld...") |
|||
Line 3: | Line 3: | ||
1-z &; n=0 \\ | 1-z &; n=0 \\ | ||
(1-z)e^{z+\frac{z^2}{2}+\frac{z^3}{3}+\ldots+\frac{z^n}{n}} &; \mathrm{otherwise}. \end{array} \right.$$ | (1-z)e^{z+\frac{z^2}{2}+\frac{z^3}{3}+\ldots+\frac{z^n}{n}} &; \mathrm{otherwise}. \end{array} \right.$$ | ||
+ | |||
+ | =Properties= | ||
+ | <div class="toccolours mw-collapsible mw-collapsed"> | ||
+ | <strong>Proposition:</strong> The following formula holds for $|z| \leq 1$: | ||
+ | $$\left| 1-E_n(z) \right| \leq \left| z \right|^{n+1}.$$ | ||
+ | <div class="mw-collapsible-content"> | ||
+ | <strong>Proof:</strong> █ | ||
+ | </div> | ||
+ | </div> |
Revision as of 00:42, 11 May 2016
The Weierstrass elementary factors $E_n$ are defined for $n \in \{0,1,2,\ldots\}$ by $$E_n(z)=\left\{ \begin{array}{ll} 1-z &; n=0 \\ (1-z)e^{z+\frac{z^2}{2}+\frac{z^3}{3}+\ldots+\frac{z^n}{n}} &; \mathrm{otherwise}. \end{array} \right.$$
Properties
Proposition: The following formula holds for $|z| \leq 1$: $$\left| 1-E_n(z) \right| \leq \left| z \right|^{n+1}.$$
Proof: █