Difference between revisions of "Derivative of Legendre chi 2"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "<div class="toccolours mw-collapsible mw-collapsed"> <strong>Proposition:</strong> The following formula holds: $$\dfrac{d}{dx} \chi_2(x) = \dfr...")
 
Line 1: Line 1:
 
<div class="toccolours mw-collapsible mw-collapsed">
 
<div class="toccolours mw-collapsible mw-collapsed">
 
<strong>[[Derivative of Legendre chi|Proposition]]:</strong> The following formula holds:
 
<strong>[[Derivative of Legendre chi|Proposition]]:</strong> The following formula holds:
$$\dfrac{d}{dx} \chi_2(x) = \dfrac{\mathrm{arctanh}(x)}{x},$$
+
$$\dfrac{\mathrm{d}}{\mathrm{d}x} \chi_2(x) = \dfrac{\mathrm{arctanh}(x)}{x},$$
 
where $\chi$ denotes the [[Legendre chi]] function and $\mathrm{arctanh}$ denotes the [[Arctanh|inverse hyperbolic tangent]] function.
 
where $\chi$ denotes the [[Legendre chi]] function and $\mathrm{arctanh}$ denotes the [[Arctanh|inverse hyperbolic tangent]] function.
 
<div class="mw-collapsible-content">
 
<div class="mw-collapsible-content">

Revision as of 19:08, 15 May 2016

Proposition: The following formula holds: $$\dfrac{\mathrm{d}}{\mathrm{d}x} \chi_2(x) = \dfrac{\mathrm{arctanh}(x)}{x},$$ where $\chi$ denotes the Legendre chi function and $\mathrm{arctanh}$ denotes the inverse hyperbolic tangent function.

Proof: