Difference between revisions of "Derivative of Legendre chi 2"
From specialfunctionswiki
(Created page with "<div class="toccolours mw-collapsible mw-collapsed"> <strong>Proposition:</strong> The following formula holds: $$\dfrac{d}{dx} \chi_2(x) = \dfr...") |
|||
Line 1: | Line 1: | ||
<div class="toccolours mw-collapsible mw-collapsed"> | <div class="toccolours mw-collapsible mw-collapsed"> | ||
<strong>[[Derivative of Legendre chi|Proposition]]:</strong> The following formula holds: | <strong>[[Derivative of Legendre chi|Proposition]]:</strong> The following formula holds: | ||
− | $$\dfrac{d}{ | + | $$\dfrac{\mathrm{d}}{\mathrm{d}x} \chi_2(x) = \dfrac{\mathrm{arctanh}(x)}{x},$$ |
where $\chi$ denotes the [[Legendre chi]] function and $\mathrm{arctanh}$ denotes the [[Arctanh|inverse hyperbolic tangent]] function. | where $\chi$ denotes the [[Legendre chi]] function and $\mathrm{arctanh}$ denotes the [[Arctanh|inverse hyperbolic tangent]] function. | ||
<div class="mw-collapsible-content"> | <div class="mw-collapsible-content"> |
Revision as of 19:08, 15 May 2016
Proposition: The following formula holds: $$\dfrac{\mathrm{d}}{\mathrm{d}x} \chi_2(x) = \dfrac{\mathrm{arctanh}(x)}{x},$$ where $\chi$ denotes the Legendre chi function and $\mathrm{arctanh}$ denotes the inverse hyperbolic tangent function.
Proof: █