Difference between revisions of "Derivative of arcsinh"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "<div class="toccolours mw-collapsible mw-collapsed"> <strong>Theorem:</strong> The following formula holds: $$\dfrac{d}{dz} \mathrm{arcsinh}(z) = \df...")
 
Line 1: Line 1:
 
<div class="toccolours mw-collapsible mw-collapsed">
 
<div class="toccolours mw-collapsible mw-collapsed">
 
<strong>[[Derivative of arcsinh|Theorem]]:</strong> The following formula holds:
 
<strong>[[Derivative of arcsinh|Theorem]]:</strong> The following formula holds:
$$\dfrac{d}{dz} \mathrm{arcsinh}(z) = \dfrac{1}{\sqrt{1+z^2}}.$$
+
$$\dfrac{\mathrm{d}}{\mathrm{d}z} \mathrm{arcsinh}(z) = \dfrac{1}{\sqrt{1+z^2}},$$
 +
where $\mathrm{arcsinh}$ denotes the [[arcsinh|inverse hyperbolic sine]].
 
<div class="mw-collapsible-content">
 
<div class="mw-collapsible-content">
 
<strong>Proof:</strong> █  
 
<strong>Proof:</strong> █  
 
</div>
 
</div>
 
</div>
 
</div>

Revision as of 19:16, 15 May 2016

Theorem: The following formula holds: $$\dfrac{\mathrm{d}}{\mathrm{d}z} \mathrm{arcsinh}(z) = \dfrac{1}{\sqrt{1+z^2}},$$ where $\mathrm{arcsinh}$ denotes the inverse hyperbolic sine.

Proof: