Difference between revisions of "Derivative of tanh"

From specialfunctionswiki
Jump to: navigation, search
Line 1: Line 1:
 
<div class="toccolours mw-collapsible mw-collapsed">
 
<div class="toccolours mw-collapsible mw-collapsed">
<strong>[[Derivative of tanh|Proposition]]:</strong> $\dfrac{d}{dx}$[[Tanh|$\tanh$]]$(x)=$[[Sech|$\mathrm{sech}$]]$(x)$
+
<strong>[[Derivative of tanh|Proposition]]:</strong> The following formula holds:
 +
$$\dfrac{\mathrm{d}}{\mathrm{d}x} \tanh(x)=\sech(x),$$
 +
where $\tanh$ denotes the [[tanh|hyperbolic tangent]] and $\sech$ denotes the [[sech|hyperbolic secant]].
 
<div class="mw-collapsible-content">
 
<div class="mw-collapsible-content">
 
<strong>Proof:</strong> █  
 
<strong>Proof:</strong> █  
 
</div>
 
</div>
 
</div>
 
</div>

Revision as of 20:28, 15 May 2016

Proposition: The following formula holds: $$\dfrac{\mathrm{d}}{\mathrm{d}x} \tanh(x)=\sech(x),$$ where $\tanh$ denotes the hyperbolic tangent and $\sech$ denotes the hyperbolic secant.

Proof: