Difference between revisions of "Derivative of tanh"

From specialfunctionswiki
Jump to: navigation, search
Line 1: Line 1:
 
<div class="toccolours mw-collapsible mw-collapsed">
 
<div class="toccolours mw-collapsible mw-collapsed">
 
<strong>[[Derivative of tanh|Proposition]]:</strong> The following formula holds:
 
<strong>[[Derivative of tanh|Proposition]]:</strong> The following formula holds:
$$\dfrac{\mathrm{d}}{\mathrm{d}x} \tanh(x)=\sech(x),$$
+
$$\dfrac{\mathrm{d}}{\mathrm{d}x} \tanh(x)=\mathrm{sech}(x),$$
where $\tanh$ denotes the [[tanh|hyperbolic tangent]] and $\sech$ denotes the [[sech|hyperbolic secant]].
+
where $\tanh$ denotes the [[tanh|hyperbolic tangent]] and $\mathrm{sech}$ denotes the [[sech|hyperbolic secant]].
 
<div class="mw-collapsible-content">
 
<div class="mw-collapsible-content">
 
<strong>Proof:</strong> █  
 
<strong>Proof:</strong> █  
 
</div>
 
</div>
 
</div>
 
</div>

Revision as of 20:28, 15 May 2016

Proposition: The following formula holds: $$\dfrac{\mathrm{d}}{\mathrm{d}x} \tanh(x)=\mathrm{sech}(x),$$ where $\tanh$ denotes the hyperbolic tangent and $\mathrm{sech}$ denotes the hyperbolic secant.

Proof: