Difference between revisions of "Arctan"

From specialfunctionswiki
Jump to: navigation, search
(Properties)
Line 9: Line 9:
  
 
=Properties=
 
=Properties=
<div class="toccolours mw-collapsible mw-collapsed">
+
{{:Derivative of arctan}}
<strong>Proposition:</strong>
 
$\dfrac{d}{dz} \mathrm{arctan}(z) = \dfrac{1}{z^2+1}$
 
<div class="mw-collapsible-content">
 
<strong>Proof:</strong> If $\theta=\mathrm{arctan}(z)$ then $\tan \theta = z$. Now use [[implicit differentiation]] with respect to $z$ yields
 
$$\sec^2(\theta)\theta'=1.$$
 
The following triangle shows that $\sec^2(\mathrm{arctan}(z))=z^2+1$:
 
[[File:Sec(arctan(z)).png|200px|center]]
 
Substituting back in $\theta=\mathrm{arccos(z)}$ yields the formula
 
$$\dfrac{d}{dz} \mathrm{arccos(z)} = \dfrac{1}{\sec^2(\mathrm{arctan(z)})} = \dfrac{1}{z^2+1}. █$$
 
</div>
 
</div>
 
  
 
<div class="toccolours mw-collapsible mw-collapsed">
 
<div class="toccolours mw-collapsible mw-collapsed">

Revision as of 03:27, 16 May 2016

The $\mathrm{arctan}$ function is the inverse function of the tangent function.

Properties

Theorem

The following formula holds: $$\dfrac{\mathrm{d}}{\mathrm{d}z} \mathrm{arctan}(z) = \dfrac{1}{z^2+1},$$ where $\mathrm{arctan}$ denotes the inverse tangent function.

Proof

If $\theta=\mathrm{arctan}(z)$ then $\tan \theta = z$. Now implicit differentiation with respect to $z$ yields $$\sec^2(\theta)\theta'=1.$$ The following triangle shows that $\sec^2(\mathrm{arctan}(z))=z^2+1$:

Sec(arctan(z)).png

Substituting back in $\theta=\mathrm{arccos(z)}$ yields the formula $$\dfrac{\mathrm{d}}{\mathrm{d}z} \mathrm{arccos(z)} = \dfrac{1}{\sec^2(\mathrm{arctan(z)})} = \dfrac{1}{z^2+1},$$ as was to be shown. █

References

Proposition: $\displaystyle\int \mathrm{arctan}(z) = z\mathrm{arctan}(z) - \dfrac{1}{2}\log(1+z^2)+C$

Proof:

Proposition: $\mathrm{arctan}(z) = \mathrm{arccot}\left( \dfrac{1}{z} \right)$

Proof:

Relationship between arctan and hypergeometric 2F1

References

Weisstein, Eric W. "Inverse Tangent." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/InverseTangent.html

See Also

Tangent
Tanh
Arctanh

<center>Inverse trigonometric functions
</center>