Difference between revisions of "Antiderivative of arcsin"
From specialfunctionswiki
(Created page with "<div class="toccolours mw-collapsible mw-collapsed"> <strong>Theorem:</strong> The following formula holds: $$\displaystyle\int \mathrm{arcsin}(z)...") |
(No difference)
|
Revision as of 03:38, 16 May 2016
Theorem: The following formula holds: $$\displaystyle\int \mathrm{arcsin}(z) \mathrm{d}z = \sqrt{1-z^2}+z\mathrm{arcsin}(z)+C,$$ where $\mathrm{arcsin}$ denotes the inverse sine function.
Proof: █