Difference between revisions of "Arctan"

From specialfunctionswiki
Jump to: navigation, search
(Properties)
Line 3: Line 3:
 
<div align="center">
 
<div align="center">
 
<gallery>
 
<gallery>
File:Arctan.png|Graph of $\mathrm{arctan}$ on $[-1,1]$.
+
File:Arctanplot.png|Graph of $\mathrm{arctan}$ on $[-20,20]$.
File:Complexarctanplot.png|[[Domain coloring]] of $\mathrm{arctan}$ on $[-2,2] \times [-2,2] \subset \mathbb{C}.$
+
File:Complexarctanplot.png|[[Domain coloring]] of $\mathrm{arctan}$.
 
</gallery>
 
</gallery>
 
</div>
 
</div>
Line 10: Line 10:
 
=Properties=
 
=Properties=
 
{{:Derivative of arctan}}
 
{{:Derivative of arctan}}
 
+
{{:Antiderivative of arctan}}
<div class="toccolours mw-collapsible mw-collapsed">
 
<strong>Proposition:</strong>
 
$\displaystyle\int \mathrm{arctan}(z) = z\mathrm{arctan}(z) - \dfrac{1}{2}\log(1+z^2)+C$
 
<div class="mw-collapsible-content">
 
<strong>Proof:</strong> █
 
</div>
 
</div>
 
  
 
<div class="toccolours mw-collapsible mw-collapsed">
 
<div class="toccolours mw-collapsible mw-collapsed">

Revision as of 04:15, 16 May 2016

The $\mathrm{arctan}$ function is the inverse function of the tangent function.

Properties

Theorem

The following formula holds: $$\dfrac{\mathrm{d}}{\mathrm{d}z} \mathrm{arctan}(z) = \dfrac{1}{z^2+1},$$ where $\mathrm{arctan}$ denotes the inverse tangent function.

Proof

If $\theta=\mathrm{arctan}(z)$ then $\tan \theta = z$. Now implicit differentiation with respect to $z$ yields $$\sec^2(\theta)\theta'=1.$$ The following triangle shows that $\sec^2(\mathrm{arctan}(z))=z^2+1$:

Sec(arctan(z)).png

Substituting back in $\theta=\mathrm{arccos(z)}$ yields the formula $$\dfrac{\mathrm{d}}{\mathrm{d}z} \mathrm{arccos(z)} = \dfrac{1}{\sec^2(\mathrm{arctan(z)})} = \dfrac{1}{z^2+1},$$ as was to be shown. █

References

Theorem

The following formula holds: $$\displaystyle\int \mathrm{arctan}(z) \mathrm{d}z = z\mathrm{arctan}(z) - \dfrac{1}{2}\log \left(z^2+1 \right)+C,$$ where $\mathrm{arctan}$ denotes the inverse tangent and $\log$ denotes the logarithm.

Proof

Let $u=\mathrm{arctan}(z)$ and $\mathrm{d}v=1$. Then $v=z$ and because of the derivative of arctan, $\mathrm{d}u=\dfrac{1}{z^2+1} \mathrm{d}z$. Therefore using integration by parts, $$\displaystyle\int \mathrm{arctan}(z) \mathrm{d}z = z \mathrm{arctan}(z) - \displaystyle\int \dfrac{z}{z^2+1} \mathrm{d}z.$$ To evaluate the remaining integral, let $w=z^2+1$ so that $\mathrm{d}w=2z \mathrm{d}z$, i.e. $\dfrac{1}{2} \mathrm{d} w = z \mathrm{d}z$ and we see using the derivative of the logarithm, $$\displaystyle\int \mathrm{arctan}(z) \mathrm{d}z = z \mathrm{arctan}(z) - \dfrac{1}{2}\displaystyle\int \dfrac{1}{w} \mathrm{d}w = z \mathrm{arctan}(z) - \dfrac{1}{2} \log(z^2+1) + C,$$ as was to be shown.

References

Proposition: $\mathrm{arctan}(z) = \mathrm{arccot}\left( \dfrac{1}{z} \right)$

Proof:

Relationship between arctan and hypergeometric 2F1

References

Weisstein, Eric W. "Inverse Tangent." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/InverseTangent.html

See Also

Tangent
Tanh
Arctanh

<center>Inverse trigonometric functions
</center>