Difference between revisions of "Gamma(1)=1"
From specialfunctionswiki
(Created page with "<div class="toccolours mw-collapsible mw-collapsed" style="width:800px"> <strong>Theorem:</strong> The following formula holds: $$\Gamma(1)=1,$$ where $\...") |
|||
Line 6: | Line 6: | ||
<strong>Proof:</strong> Compute | <strong>Proof:</strong> Compute | ||
$$\begin{array}{ll} | $$\begin{array}{ll} | ||
− | \Gamma(1) &= \displaystyle\int_0^{\infty} \xi^{ | + | \Gamma(1) &= \displaystyle\int_0^{\infty} \xi^{0} e^{-\xi} d\xi \\ |
&= \displaystyle\int_0^{\infty} e^{-\xi} d\xi \\ | &= \displaystyle\int_0^{\infty} e^{-\xi} d\xi \\ | ||
&= \left[ -e^{-\xi} \right]_{0}^{\infty} \\ | &= \left[ -e^{-\xi} \right]_{0}^{\infty} \\ |
Revision as of 05:40, 16 May 2016
Theorem: The following formula holds: $$\Gamma(1)=1,$$ where $\Gamma$ denotes the gamma function.
Proof: Compute $$\begin{array}{ll} \Gamma(1) &= \displaystyle\int_0^{\infty} \xi^{0} e^{-\xi} d\xi \\ &= \displaystyle\int_0^{\infty} e^{-\xi} d\xi \\ &= \left[ -e^{-\xi} \right]_{0}^{\infty} \\ &= 1. \end{array}$$ as was to be shown. █