Difference between revisions of "Derivative of hyperbolic cosecant"

From specialfunctionswiki
Jump to: navigation, search
Line 1: Line 1:
 
<div class="toccolours mw-collapsible mw-collapsed">
 
<div class="toccolours mw-collapsible mw-collapsed">
<strong>[[Derivative of hyperbolic cosecant|Proposition]]:</strong> The following formula holds:
+
<strong>[[Derivative of hyperbolic cosecant|Theorem]]:</strong> The following formula holds:
 
$$\dfrac{\mathrm{d}}{\mathrm{d}z} \mathrm{csch}(z)=-\mathrm{csch}(z)\mathrm{coth}(z),$$
 
$$\dfrac{\mathrm{d}}{\mathrm{d}z} \mathrm{csch}(z)=-\mathrm{csch}(z)\mathrm{coth}(z),$$
 
where $\mathrm{csch}$ denotes the [[csch|hyperbolic cosecant]] and $\mathrm{coth}$ denotes the [[coth|hyperbolic cotangent]].
 
where $\mathrm{csch}$ denotes the [[csch|hyperbolic cosecant]] and $\mathrm{coth}$ denotes the [[coth|hyperbolic cotangent]].

Revision as of 08:21, 16 May 2016

Theorem: The following formula holds: $$\dfrac{\mathrm{d}}{\mathrm{d}z} \mathrm{csch}(z)=-\mathrm{csch}(z)\mathrm{coth}(z),$$ where $\mathrm{csch}$ denotes the hyperbolic cosecant and $\mathrm{coth}$ denotes the hyperbolic cotangent.

Proof: