Difference between revisions of "Antiderivative of coth"
From specialfunctionswiki
Line 1: | Line 1: | ||
<div class="toccolours mw-collapsible mw-collapsed"> | <div class="toccolours mw-collapsible mw-collapsed"> | ||
<strong>[[Antiderivative of coth|Theorem]]:</strong> The following formula holds: | <strong>[[Antiderivative of coth|Theorem]]:</strong> The following formula holds: | ||
− | $$\displaystyle\int \mathrm{coth}(z) | + | $$\displaystyle\int \mathrm{coth}(z) \mathrm{d}z=\log(\sinh(z)),$$ |
where $\mathrm{coth}$ denotes the [[coth|hyperbolic cotangent]], $\log$ denotes the [[logarithm]], and $\sinh$ denotes the [[sinh|hyperbolic sine]]. | where $\mathrm{coth}$ denotes the [[coth|hyperbolic cotangent]], $\log$ denotes the [[logarithm]], and $\sinh$ denotes the [[sinh|hyperbolic sine]]. | ||
<div class="mw-collapsible-content"> | <div class="mw-collapsible-content"> |
Revision as of 08:30, 16 May 2016
Theorem: The following formula holds: $$\displaystyle\int \mathrm{coth}(z) \mathrm{d}z=\log(\sinh(z)),$$ where $\mathrm{coth}$ denotes the hyperbolic cotangent, $\log$ denotes the logarithm, and $\sinh$ denotes the hyperbolic sine.
Proof: █