Difference between revisions of "Anger derivative recurrence"
From specialfunctionswiki
(Created page with "<div class="toccolours mw-collapsible mw-collapsed"> <strong>Theorem:</strong> The following formula holds: $$2 \mathbf{J}_{\nu}'(z)=\mathbf{J}...") |
(No difference)
|
Revision as of 16:47, 23 May 2016
Theorem: The following formula holds: $$2 \mathbf{J}_{\nu}'(z)=\mathbf{J}_{\nu-1}(z)-\mathbf{J}_{\nu+1}(z),$$ where $\mathbf{J}_{\nu}$ denotes the Anger function.
Proof: █