Difference between revisions of "Chi"

From specialfunctionswiki
Jump to: navigation, search
Line 1: Line 1:
The hyperbolic cosine integral $\mathrm{chi} \colon (0,\infty) \rightarrow \mathbb{R}$ is defined by the formula
+
The hyperbolic cosine integral $\mathrm{Chi} \colon (0,\infty) \rightarrow \mathbb{R}$ is defined by the formula
$$\mathrm{chi}(z)=-\displaystyle\int_z^{\infty} \dfrac{\mathrm{cosh}(t)}{t} \mathrm{d}t=\gamma + \log(z) + \displaystyle\int_0^z \dfrac{\mathrm{cosh}(t)-1}{t} \mathrm{d}t,$$
+
$$\mathrm{Chi}(z)=-\displaystyle\int_z^{\infty} \dfrac{\mathrm{cosh}(t)}{t} \mathrm{d}t=\gamma + \log(z) + \displaystyle\int_0^z \dfrac{\mathrm{cosh}(t)-1}{t} \mathrm{d}t,$$
 
where $\gamma$ denotes the [[Euler-Mascheroni constant]], $\log$ denotes the [[logarithm]], and $\mathrm{cosh}$ denotes the [[cosh|hyperbolic cosine]] function.
 
where $\gamma$ denotes the [[Euler-Mascheroni constant]], $\log$ denotes the [[logarithm]], and $\mathrm{cosh}$ denotes the [[cosh|hyperbolic cosine]] function.
  
 
<div align="center">
 
<div align="center">
 
<gallery>
 
<gallery>
File:Coshintegral.png|Graph of $\mathrm{chi}$ on $(0,5]$.
+
File:Chiplot.png|Graph of $\mathrm{chi}$ on $(0,5]$.
 
File:Domain coloring hyperbolic cosine integral.png|[[Domain coloring]] of [[analytic continuation]] of $\mathrm{chi}$.
 
File:Domain coloring hyperbolic cosine integral.png|[[Domain coloring]] of [[analytic continuation]] of $\mathrm{chi}$.
 
</gallery>
 
</gallery>

Revision as of 21:55, 23 May 2016

The hyperbolic cosine integral $\mathrm{Chi} \colon (0,\infty) \rightarrow \mathbb{R}$ is defined by the formula $$\mathrm{Chi}(z)=-\displaystyle\int_z^{\infty} \dfrac{\mathrm{cosh}(t)}{t} \mathrm{d}t=\gamma + \log(z) + \displaystyle\int_0^z \dfrac{\mathrm{cosh}(t)-1}{t} \mathrm{d}t,$$ where $\gamma$ denotes the Euler-Mascheroni constant, $\log$ denotes the logarithm, and $\mathrm{cosh}$ denotes the hyperbolic cosine function.

<center>$\ast$-integral functions
</center>