Difference between revisions of "Fresnel C"

From specialfunctionswiki
Jump to: navigation, search
Line 4: Line 4:
 
<div align="center">
 
<div align="center">
 
<gallery>
 
<gallery>
File:Fresnel.png| Fresnel integrals on $\mathbb{R}$.
+
File:Fresnelcplot.png| Graph of $C$.
 
File:Complexfresnelcplot.png|[[Domain coloring]] of [[analytic continuation]] of Fresnel $C$.
 
File:Complexfresnelcplot.png|[[Domain coloring]] of [[analytic continuation]] of Fresnel $C$.
 
</gallery>
 
</gallery>

Revision as of 22:47, 23 May 2016

The Fresnel C function is defined by the formula $$C(x)=\int_0^x \cos(t^2) dt.$$ (Note in Abramowitz&Stegun it is defined differently.)

Properties

Theorem: The following limit is known: $$\displaystyle\lim_{x \rightarrow \infty} C(x) = \displaystyle\int_0^{\infty} \cos(t^2)dt = \sqrt{ \dfrac{\pi}{8}}.$$

Proof:

See Also

Fresnel S

Videos

How to integrate cos(x^2) - The Fresnel Integral C(x)

<center>$\ast$-integral functions
</center>