Difference between revisions of "Barnes G"

From specialfunctionswiki
Jump to: navigation, search
(Properties)
(Properties)
Line 11: Line 11:
 
=Properties=
 
=Properties=
 
{{:Barnes G at z+1}}
 
{{:Barnes G at z+1}}
 
+
{{:Barnes G at positive integer}}
<div class="toccolours mw-collapsible mw-collapsed">
 
<strong>Corollary:</strong> The following values hold:
 
$$G(n) = \left\{ \begin{array}{ll}
 
0 &; n=-1,-2,\ldots \\
 
\displaystyle\prod_{i=0}^{n-2} i!&; n=0,1,2,\ldots
 
\end{array} \right.$$
 
<div class="mw-collapsible-content">
 
<strong>Proof:</strong> █
 
</div>
 
</div>
 

Revision as of 00:44, 24 May 2016

The Barnes $G$ function is defined by the following Weierstrass factorization: $$G(1+z)=(2\pi)^{\frac{z}{2}} \exp \left( - \dfrac{z+z^2(1+\gamma)}{2} \right) \displaystyle\prod_{k=1}^{\infty} \left\{ \left( 1+\dfrac{z}{k} \right)^k \exp \left( \dfrac{z^2}{2k}-z \right) \right\},$$ where $\exp$ denotes the exponential function and $\gamma$ denotes the Euler-Mascheroni constant.

Properties

Barnes G at z+1

Theorem

The following formula holds: $$G(n) = \left\{ \begin{array}{ll} 0&\quad n=-1,-2,\ldots \\ \displaystyle\prod_{k=0}^{n-2} k!&\quad n=0,1,2,\ldots, \end{array} \right.$$ where $G$ denotes the Barnes G function and $i!$ denotes the factorial.

Proof

References