Difference between revisions of "Minkowski question mark"

From specialfunctionswiki
Jump to: navigation, search
 
Line 3: Line 3:
 
If $x \in \mathbb{R}$ is rational with continued fraction expansion $x=[a_0;a_1,a_2,\ldots,a_m]$ then define
 
If $x \in \mathbb{R}$ is rational with continued fraction expansion $x=[a_0;a_1,a_2,\ldots,a_m]$ then define
 
$$?(x) = a_0 + 2\displaystyle\sum_{n=1}^m \dfrac{(-1)^{n+1}}{2^{a_1+\ldots+a_m}}.$$
 
$$?(x) = a_0 + 2\displaystyle\sum_{n=1}^m \dfrac{(-1)^{n+1}}{2^{a_1+\ldots+a_m}}.$$
 +
 +
[[Category:SpecialFunction]]

Latest revision as of 18:29, 24 May 2016

If $x \in \mathbb{R}$ is irrational with continued fraction expansion $x=[a_0;a_1,a_2,\ldots]$ then define $$?(x) = a_0 + 2 \displaystyle\sum_{n=1}^{\infty} \dfrac{(-1)^{n+1}}{2^{a_1+\ldots+a_n}}.$$ If $x \in \mathbb{R}$ is rational with continued fraction expansion $x=[a_0;a_1,a_2,\ldots,a_m]$ then define $$?(x) = a_0 + 2\displaystyle\sum_{n=1}^m \dfrac{(-1)^{n+1}}{2^{a_1+\ldots+a_m}}.$$