Difference between revisions of "Ramanujan theta function"
From specialfunctionswiki
(Created page with "Let $|ab|<1$. The Ramanujan theta function $f$ is defined by $$f(a,b)=\displaystyle\sum_{k=-\infty}^{\infty} a^{\frac{n(n+1)}{2}} b^{\frac{n(n-1)}{2}}.$$") |
|||
Line 1: | Line 1: | ||
Let $|ab|<1$. The Ramanujan theta function $f$ is defined by | Let $|ab|<1$. The Ramanujan theta function $f$ is defined by | ||
$$f(a,b)=\displaystyle\sum_{k=-\infty}^{\infty} a^{\frac{n(n+1)}{2}} b^{\frac{n(n-1)}{2}}.$$ | $$f(a,b)=\displaystyle\sum_{k=-\infty}^{\infty} a^{\frac{n(n+1)}{2}} b^{\frac{n(n-1)}{2}}.$$ | ||
+ | |||
+ | [[Category:SpecialFunction]] |
Revision as of 18:32, 24 May 2016
Let $|ab|<1$. The Ramanujan theta function $f$ is defined by $$f(a,b)=\displaystyle\sum_{k=-\infty}^{\infty} a^{\frac{n(n+1)}{2}} b^{\frac{n(n-1)}{2}}.$$