Difference between revisions of "Ramanujan theta function"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "Let $|ab|<1$. The Ramanujan theta function $f$ is defined by $$f(a,b)=\displaystyle\sum_{k=-\infty}^{\infty} a^{\frac{n(n+1)}{2}} b^{\frac{n(n-1)}{2}}.$$")
 
Line 1: Line 1:
 
Let $|ab|<1$. The Ramanujan theta function $f$ is defined by
 
Let $|ab|<1$. The Ramanujan theta function $f$ is defined by
 
$$f(a,b)=\displaystyle\sum_{k=-\infty}^{\infty} a^{\frac{n(n+1)}{2}} b^{\frac{n(n-1)}{2}}.$$
 
$$f(a,b)=\displaystyle\sum_{k=-\infty}^{\infty} a^{\frac{n(n+1)}{2}} b^{\frac{n(n-1)}{2}}.$$
 +
 +
[[Category:SpecialFunction]]

Revision as of 18:32, 24 May 2016

Let $|ab|<1$. The Ramanujan theta function $f$ is defined by $$f(a,b)=\displaystyle\sum_{k=-\infty}^{\infty} a^{\frac{n(n+1)}{2}} b^{\frac{n(n-1)}{2}}.$$