Difference between revisions of "Darboux function"

From specialfunctionswiki
Jump to: navigation, search
Line 26: Line 26:
 
=References=
 
=References=
 
[https://pure.ltu.se/ws/files/30923977/LTU-EX-03320-SE.pdf]<br />
 
[https://pure.ltu.se/ws/files/30923977/LTU-EX-03320-SE.pdf]<br />
 +
 +
[[Category:SpecialFunction]]

Revision as of 18:34, 24 May 2016

The Darboux function is defined by $$D(x)=\displaystyle\sum_{k=1}^{\infty} \dfrac{\sin\left((k+1)!x\right)}{k!},$$ where $\sin$ denotes the sine function.

Properties

Theorem: The Darboux function is continuous on $\mathbb{R}$.

Proof:

Theorem: The Darboux function is nowhere differentiable on $\mathbb{R}$.

Proof:

References

[1]