Difference between revisions of "Darboux function"
From specialfunctionswiki
Line 26: | Line 26: | ||
=References= | =References= | ||
[https://pure.ltu.se/ws/files/30923977/LTU-EX-03320-SE.pdf]<br /> | [https://pure.ltu.se/ws/files/30923977/LTU-EX-03320-SE.pdf]<br /> | ||
+ | |||
+ | [[Category:SpecialFunction]] |
Revision as of 18:34, 24 May 2016
The Darboux function is defined by $$D(x)=\displaystyle\sum_{k=1}^{\infty} \dfrac{\sin\left((k+1)!x\right)}{k!},$$ where $\sin$ denotes the sine function.
Properties
Theorem: The Darboux function is continuous on $\mathbb{R}$.
Proof: █
Theorem: The Darboux function is nowhere differentiable on $\mathbb{R}$.
Proof: █