Difference between revisions of "Tanhc"

From specialfunctionswiki
Jump to: navigation, search
Line 19: Line 19:
  
 
<center>{{:*-c functions footer}}</center>
 
<center>{{:*-c functions footer}}</center>
 +
 +
[[Category:SpecialFunction]]

Revision as of 18:46, 24 May 2016

The $\mathrm{tanhc}$ function is defined by $$\mathrm{tanhc}(z) = \dfrac{\mathrm{tanh}(z)}{z}.$$


Properties

Theorem: The following formula holds: $$\dfrac{d}{dz} \mathrm{tanhc}(z) = \dfrac{\mathrm{sech}^2(z)}{z}-\dfrac{\mathrm{tanh(z)}}{z^2}.$$

Proof:

<center>$*$-c functions
</center>