Difference between revisions of "Mangoldt"
From specialfunctionswiki
Line 18: | Line 18: | ||
[https://www.youtube.com/watch?v=KTPGc4170uo Number Theory 31: Liouville and mangoldt functions]<br /> | [https://www.youtube.com/watch?v=KTPGc4170uo Number Theory 31: Liouville and mangoldt functions]<br /> | ||
[https://www.youtube.com/watch?v=X0XJ3TuMiFc Number theory: Arithmetic functions #1]<br /> | [https://www.youtube.com/watch?v=X0XJ3TuMiFc Number theory: Arithmetic functions #1]<br /> | ||
+ | |||
+ | [[Category:SpecialFunction]] |
Revision as of 18:49, 24 May 2016
The Mangoldt function is defined by the formula $$\Lambda(n) = \left\{ \begin{array}{ll} \log p &; n=p^k \mathrm{\hspace{2pt}for\hspace{2pt}some\hspace{2pt}prime\hspace{2pt}}p\mathrm{\hspace{2pt}and\hspace{2pt}integer\hspace{2pt}}k\geq 1, \\ 0 &; \mathrm{otherwise}. \end{array} \right.$$
Properties
Theorem: The following formula holds: $$\log(n) = \displaystyle\sum_{d | n} \Lambda(d),$$ where $\log$ denotes the natural logarithm and the notation $d | n$ denotes that $d$ is a divisor of $n$.
Proof: █
Videos
Number Theory 31: Liouville and mangoldt functions
Number theory: Arithmetic functions #1