Difference between revisions of "Riemann zeta"

From specialfunctionswiki
Jump to: navigation, search
(External links)
Line 40: Line 40:
 
*[http://empslocal.ex.ac.uk/people/staff/mrwatkin//zeta/devlin.pdf How Euler discovered the zeta function]
 
*[http://empslocal.ex.ac.uk/people/staff/mrwatkin//zeta/devlin.pdf How Euler discovered the zeta function]
 
*[http://www.dtc.umn.edu/~odlyzko/zeta_tables/ Andrew Odlyzko: Tables of zeros of the Riemann zeta function]
 
*[http://www.dtc.umn.edu/~odlyzko/zeta_tables/ Andrew Odlyzko: Tables of zeros of the Riemann zeta function]
 +
 +
[[Category:SpecialFunction]]

Revision as of 18:49, 24 May 2016

Consider the function $\zeta$ defined by the series $$\zeta(z) = \displaystyle\sum_{n=1}^{\infty} \dfrac{1}{n^z}.$$

Properties

Proposition: If $\mathrm{Re} \hspace{2pt} z > 1$, then the series defining $\zeta(z)$ converges.

Proof:

Theorem

The following formula holds for $\mathrm{Re}(z)>1$: $$\zeta(z)=\displaystyle\prod_{p \mathrm{\hspace{2pt} prime}} \dfrac{1}{1-p^{-z}},$$ where $\zeta$ denotes Riemann zeta.

Proof

References

Proposition: Let $n$ be a positive integer. Then $$\zeta(2n)=(-1)^{n+1}\dfrac{B_{2n}(2\pi)^{2n}}{2(2n)!},$$ where $B_n$ denotes the Bernoulli numbers.

Proof:

Theorem

The following formula holds: $$P(z)=\displaystyle\sum_{k=1}^{\infty} \dfrac{\mu(k)}{k} \log \zeta(kz),$$ where $P$ denotes the Prime zeta function, $\mu$ denotes the Möbius function, $\log$ denotes the logarithm, and $\zeta$ denotes the Riemann zeta function.

Proof

References

Videos

Riemann Zeta function playlist

External links