Difference between revisions of "Dirichlet L-function"

From specialfunctionswiki
Jump to: navigation, search
Line 4: Line 4:
 
=References=
 
=References=
 
[http://empslocal.ex.ac.uk/people/staff/mrwatkin//zeta/devlin.pdf How Euler discovered the zeta function]
 
[http://empslocal.ex.ac.uk/people/staff/mrwatkin//zeta/devlin.pdf How Euler discovered the zeta function]
 +
 +
[[Category:SpecialFunction]]

Revision as of 18:49, 24 May 2016

Let $\chi$ be a Dirichlet character with conductor $f$. A Dirichlet $L$-function is $$L(\chi,s)=\displaystyle\sum_n \dfrac{\chi(n)}{n^s} = \displaystyle\prod_{p \hspace{2pt} \mathrm{prime}} \dfrac{1}{1-\chi(p)p^{-s}}.$$

References

How Euler discovered the zeta function