Difference between revisions of "Weierstrass zeta"
From specialfunctionswiki
(Created page with "Let $\Lambda \subset \mathbb{C}$ be a lattice. The Weierstrass zeta function is defined by $$\zeta(z;\Lambda)=\dfrac{1}{z} + \displaystyle\sum_{w \in \Lambda \setminus \{0...") |
|||
Line 1: | Line 1: | ||
Let $\Lambda \subset \mathbb{C}$ be a [[lattice]]. The Weierstrass zeta function is defined by | Let $\Lambda \subset \mathbb{C}$ be a [[lattice]]. The Weierstrass zeta function is defined by | ||
$$\zeta(z;\Lambda)=\dfrac{1}{z} + \displaystyle\sum_{w \in \Lambda \setminus \{0\}}\left( \dfrac{1}{z-w} + \dfrac{1}{w} + \dfrac{z}{w^2} \right).$$ | $$\zeta(z;\Lambda)=\dfrac{1}{z} + \displaystyle\sum_{w \in \Lambda \setminus \{0\}}\left( \dfrac{1}{z-w} + \dfrac{1}{w} + \dfrac{z}{w^2} \right).$$ | ||
+ | |||
+ | [[Category:SpecialFunction]] |
Latest revision as of 18:51, 24 May 2016
Let $\Lambda \subset \mathbb{C}$ be a lattice. The Weierstrass zeta function is defined by $$\zeta(z;\Lambda)=\dfrac{1}{z} + \displaystyle\sum_{w \in \Lambda \setminus \{0\}}\left( \dfrac{1}{z-w} + \dfrac{1}{w} + \dfrac{z}{w^2} \right).$$