Difference between revisions of "Elliptic E"
From specialfunctionswiki
Line 1: | Line 1: | ||
If $m=k^2$ we define the complete elliptic integral of the second kind, $E$, to be | If $m=k^2$ we define the complete elliptic integral of the second kind, $E$, to be | ||
− | $$E(k)=E(m)=\displaystyle\int_0^{\frac{\pi}{2}} \sqrt{1-k^2\sin^2 \theta} d\theta.$$ | + | $$E(k)=E(m)=\displaystyle\int_0^{\frac{\pi}{2}} \sqrt{1-k^2\sin^2 \theta} \mathrm{d}\theta.$$ |
<div align="center"> | <div align="center"> |
Revision as of 16:58, 25 May 2016
If $m=k^2$ we define the complete elliptic integral of the second kind, $E$, to be $$E(k)=E(m)=\displaystyle\int_0^{\frac{\pi}{2}} \sqrt{1-k^2\sin^2 \theta} \mathrm{d}\theta.$$
Domain coloring of $E$.
See Also
Elliptic K
Incomplete Elliptic E