Difference between revisions of "Elliptic E"

From specialfunctionswiki
Jump to: navigation, search
Line 1: Line 1:
 
If $m=k^2$ we define the complete elliptic integral of the second kind, $E$, to be
 
If $m=k^2$ we define the complete elliptic integral of the second kind, $E$, to be
$$E(k)=E(m)=\displaystyle\int_0^{\frac{\pi}{2}} \sqrt{1-k^2\sin^2 \theta} d\theta.$$
+
$$E(k)=E(m)=\displaystyle\int_0^{\frac{\pi}{2}} \sqrt{1-k^2\sin^2 \theta} \mathrm{d}\theta.$$
  
 
<div align="center">
 
<div align="center">

Revision as of 16:58, 25 May 2016

If $m=k^2$ we define the complete elliptic integral of the second kind, $E$, to be $$E(k)=E(m)=\displaystyle\int_0^{\frac{\pi}{2}} \sqrt{1-k^2\sin^2 \theta} \mathrm{d}\theta.$$

See Also

Elliptic K
Incomplete Elliptic E

References

"Special Functions" by Leon Hall