Difference between revisions of "Antiderivative of coth"
From specialfunctionswiki
Line 1: | Line 1: | ||
<div class="toccolours mw-collapsible mw-collapsed"> | <div class="toccolours mw-collapsible mw-collapsed"> | ||
<strong>[[Antiderivative of coth|Theorem]]:</strong> The following formula holds: | <strong>[[Antiderivative of coth|Theorem]]:</strong> The following formula holds: | ||
− | $$\displaystyle\int \mathrm{coth}(z) \mathrm{d}z=\log(\sinh(z)),$$ | + | $$\displaystyle\int \mathrm{coth}(z) \mathrm{d}z=\log(\sinh(z)) + C,$$ |
− | where $\mathrm{coth}$ denotes the [[coth|hyperbolic cotangent]], $\log$ denotes the [[logarithm]], and $\sinh$ denotes the [[sinh|hyperbolic sine]]. | + | for arbitrary constant $C$, where $\mathrm{coth}$ denotes the [[coth|hyperbolic cotangent]], $\log$ denotes the [[logarithm]], and $\sinh$ denotes the [[sinh|hyperbolic sine]]. |
<div class="mw-collapsible-content"> | <div class="mw-collapsible-content"> | ||
<strong>Proof:</strong> █ | <strong>Proof:</strong> █ | ||
</div> | </div> | ||
</div> | </div> |
Revision as of 22:43, 30 May 2016
Theorem: The following formula holds: $$\displaystyle\int \mathrm{coth}(z) \mathrm{d}z=\log(\sinh(z)) + C,$$ for arbitrary constant $C$, where $\mathrm{coth}$ denotes the hyperbolic cotangent, $\log$ denotes the logarithm, and $\sinh$ denotes the hyperbolic sine.
Proof: █