Difference between revisions of "Integral representation of polygamma for Re(z) greater than 0"
From specialfunctionswiki
(Created page with "<div class="toccolours mw-collapsible mw-collapsed"> <strong>Theorem:</strong> The following formula holds: $$\psi^{(m)}(z)=(-1)^{m+1}...") |
(No difference)
|
Revision as of 19:20, 3 June 2016
Theorem: The following formula holds: $$\psi^{(m)}(z)=(-1)^{m+1} \displaystyle\int_0^{\infty} \dfrac{t^m e^{-zt}}{1-e^{-t}} \mathrm{d}t,$$ where $\psi^{(m)}$ denotes the polygamma and $e^{-zt}$ denotes the exponential.
Proof: █